二分查找¶
「二分查找 Binary Search」利用数据的有序性,通过每轮缩小一半搜索区间来查找目标元素。
使用二分查找有两个前置条件:
- 要求输入数据是有序的,这样才能通过判断大小关系来排除一半的搜索区间;
- 二分查找仅适用于数组 ,而在链表中使用效率很低,因为其在循环中需要跳跃式(非连续地)访问元素。
算法实现¶
给定一个长度为 \(n\) 的排序数组 nums
,元素从小到大排列。数组的索引取值范围为
\[
0, 1, 2, \cdots, n-1
\]
使用「区间」来表示这个取值范围的方法主要有两种:
- 双闭区间 \([0, n-1]\) ,即两个边界都包含自身;此方法下,区间 \([0, 0]\) 仍包含一个元素;
- 左闭右开 \([0, n)\) ,即左边界包含自身、右边界不包含自身;此方法下,区间 \([0, 0)\) 为空;
“双闭区间” 实现¶
首先,我们先采用 “双闭区间” 的表示,在数组 nums
中查找目标元素 target
的对应索引。
二分查找 “双闭区间” 表示下的代码如下所示。
binary_search.java
/* 二分查找(双闭区间) */
int binarySearch(int[] nums, int target) {
// 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
int i = 0, j = nums.length - 1;
// 循环,当搜索区间为空时跳出(当 i > j 时为空)
while (i <= j) {
int m = (i + j) / 2; // 计算中点索引 m
if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j] 中
i = m + 1;
else if (nums[m] > target) // 此情况说明 target 在区间 [i, m-1] 中
j = m - 1;
else // 找到目标元素,返回其索引
return m;
}
// 未找到目标元素,返回 -1
return -1;
}
binary_search.cpp
/* 二分查找(双闭区间) */
int binarySearch(vector<int>& nums, int target) {
// 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
int i = 0, j = nums.size() - 1;
// 循环,当搜索区间为空时跳出(当 i > j 时为空)
while (i <= j) {
int m = (i + j) / 2; // 计算中点索引 m
if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j] 中
i = m + 1;
else if (nums[m] > target) // 此情况说明 target 在区间 [i, m-1] 中
j = m - 1;
else // 找到目标元素,返回其索引
return m;
}
// 未找到目标元素,返回 -1
return -1;
}
binary_search.py
""" 二分查找(双闭区间) """
def binary_search(nums, target):
# 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
i, j = 0, len(nums) - 1
while i <= j:
m = (i + j) // 2 # 计算中点索引 m
if nums[m] < target: # 此情况说明 target 在区间 [m+1, j] 中
i = m + 1
elif nums[m] > target: # 此情况说明 target 在区间 [i, m-1] 中
j = m - 1
else:
return m # 找到目标元素,返回其索引
return -1 # 未找到目标元素,返回 -1
binary_search.go
/* 二分查找(左闭右开) */
func binarySearch1(nums []int, target int) int {
// 初始化左闭右开 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
i, j := 0, len(nums)
// 循环,当搜索区间为空时跳出(当 i = j 时为空)
for i < j {
m := (i + j) / 2 // 计算中点索引 m
if nums[m] < target { // 此情况说明 target 在区间 [m+1, j) 中
i = m + 1
} else if nums[m] > target { // 此情况说明 target 在区间 [i, m) 中
j = m
} else { // 找到目标元素,返回其索引
return m
}
}
// 未找到目标元素,返回 -1
return -1
}
“左闭右开” 实现¶
当然,我们也可以使用 “左闭右开” 的表示方法,写出相同功能的二分查找代码。
binary_search.java
/* 二分查找(左闭右开) */
int binarySearch1(int[] nums, int target) {
// 初始化左闭右开 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
int i = 0, j = nums.length;
// 循环,当搜索区间为空时跳出(当 i = j 时为空)
while (i < j) {
int m = (i + j) / 2; // 计算中点索引 m
if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j) 中
i = m + 1;
else if (nums[m] > target) // 此情况说明 target 在区间 [i, m) 中
j = m;
else // 找到目标元素,返回其索引
return m;
}
// 未找到目标元素,返回 -1
return -1;
}
binary_search.cpp
/* 二分查找(左闭右开) */
int binarySearch1(vector<int>& nums, int target) {
// 初始化左闭右开 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
int i = 0, j = nums.size();
// 循环,当搜索区间为空时跳出(当 i = j 时为空)
while (i < j) {
int m = (i + j) / 2; // 计算中点索引 m
if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j) 中
i = m + 1;
else if (nums[m] > target) // 此情况说明 target 在区间 [i, m) 中
j = m;
else // 找到目标元素,返回其索引
return m;
}
// 未找到目标元素,返回 -1
return -1;
}
binary_search.py
""" 二分查找(左闭右开) """
def binary_search1(nums, target):
# 初始化左闭右开 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
i, j = 0, len(nums)
# 循环,当搜索区间为空时跳出(当 i = j 时为空)
while i < j:
m = (i + j) // 2 # 计算中点索引 m
if nums[m] < target: # 此情况说明 target 在区间 [m+1, j) 中
i = m + 1
elif nums[m] > target: # 此情况说明 target 在区间 [i, m) 中
j = m
else: # 找到目标元素,返回其索引
return m
return -1 # 未找到目标元素,返回 -1
binary_search.go
/* 二分查找(左闭右开) */
func binarySearch1(nums []int, target int) int {
// 初始化左闭右开 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
i, j := 0, len(nums)
// 循环,当搜索区间为空时跳出(当 i = j 时为空)
for i < j {
m := (i + j) / 2 // 计算中点索引 m
if nums[m] < target { // 此情况说明 target 在区间 [m+1, j) 中
i = m + 1
} else if nums[m] > target { // 此情况说明 target 在区间 [i, m) 中
j = m
} else { // 找到目标元素,返回其索引
return m
}
}
// 未找到目标元素,返回 -1
return -1
}
两种表示对比¶
对比下来,两种表示的代码写法有以下不同点:
表示方法 | 初始化指针 | 缩小区间 | 循环终止条件 |
---|---|---|---|
双闭区间 \([0, n-1]\) | \(i = 0\) , \(j = n-1\) | \(i = m + 1\) , \(j = m - 1\) | \(i > j\) |
左闭右开 \([0, n)\) | \(i = 0\) , \(j = n\) | \(i = m + 1\) , \(j = m\) | \(i = j\) |
观察发现,在 “双闭区间” 表示中,由于对左右两边界的定义是相同的,因此缩小区间的 \(i\) , \(j\) 处理方法也是对称的,这样更不容易出错。综上所述,建议你采用 “双闭区间” 的写法。
大数越界处理¶
当数组长度很大时,加法 \(i + j\) 的结果有可能会超出 int
类型的取值范围。在此情况下,我们需要换一种计算中点的写法。
复杂度分析¶
时间复杂度 \(O(\log n)\) : 其中 \(n\) 为数组或链表长度;每轮排除一半的区间,因此循环轮数为 \(\log_2 n\) ,使用 \(O(\log n)\) 时间。
空间复杂度 \(O(1)\) : 指针 i
, j
使用常数大小空间。
优缺点¶
二分查找效率很高,体现在:
- 二分查找时间复杂度低。 对数阶在数据量很大时具有巨大优势,例如,当数据大小 \(n = 2^{20}\) 时,线性查找需要 \(2^{20} = 1048576\) 轮循环,而二分查找仅需要 \(\log_2 2^{20} = 20\) 轮循环。
- 二分查找不需要额外空间。 相对于借助额外数据结构来实现查找的算法来说,其更加节约空间使用。
但并不意味着所有情况下都应使用二分查找,这是因为:
- 二分查找仅适用于有序数据。 如果输入数据是无序的,为了使用二分查找而专门执行数据排序,那么是得不偿失的,因为排序算法的时间复杂度一般为 \(O(n \log n)\) ,比线性查找和二分查找都更差。再例如,对于频繁插入元素的场景,为了保持数组的有序性,需要将元素插入到特定位置,时间复杂度为 \(O(n)\) ,也是非常昂贵的。
- 二分查找仅适用于数组。 由于在二分查找中,访问索引是 ”非连续“ 的,因此链表或者基于链表实现的数据结构都无法使用。
- 在小数据量下,线性查找的性能更好。 在线性查找中,每轮只需要 1 次判断操作;而在二分查找中,需要 1 次加法、1 次除法、1 ~ 3 次判断操作、1 次加法(减法),共 4 ~ 6 个单元操作;因此,在数据量 \(n\) 较小时,线性查找反而比二分查找更快。