跳转至

权衡时间与空间

理想情况下,我们希望算法的时间复杂度和空间复杂度都能够达到最优,而实际上,同时优化时间复杂度和空间复杂度是非常困难的。

降低时间复杂度,往往是以提升空间复杂度为代价的,反之亦然。 我们把牺牲内存空间来提升算法运行速度的思路称为「以空间换时间」;反之,称之为「以时间换空间」。选择哪种思路取决于我们更看重哪个方面。

大多数情况下,时间都是比空间更宝贵的,只要空间复杂度不要太离谱、能接受就行,因此以空间换时间最为常用

示例题目 *

以 LeetCode 全站第一题 两数之和 为例,「暴力枚举」和「辅助哈希表」分别为 空间最优时间最优 的两种解法。本着时间比空间更宝贵的原则,后者是本题的最佳解法。

方法一:暴力枚举

时间复杂度 \(O(N^2)\) ,空间复杂度 \(O(1)\) ,属于「时间换空间」。

虽然仅使用常数大小的额外空间,但运行速度过慢。

leetcode_two_sum.java
class SolutionBruteForce {
    public int[] twoSum(int[] nums, int target) {
        int size = nums.length;
        // 两层循环,时间复杂度 O(n^2)
        for (int i = 0; i < size - 1; i++) {
            for (int j = i + 1; j < size; j++) {
                if (nums[i] + nums[j] == target)
                    return new int[] { i, j };
            }
        }
        return new int[0];
    }
}
leetcode_two_sum.cpp
class SolutionBruteForce {
public:
    vector<int> twoSum(vector<int>& nums, int target) {
        int size = nums.size();
        // 两层循环,时间复杂度 O(n^2)
        for (int i = 0; i < size - 1; i++) {
            for (int j = i + 1; j < size; j++) {
                if (nums[i] + nums[j] == target)
                    return { i, j };
            }
        }
        return {};
    }
};
leetcode_two_sum.py
class SolutionBruteForce:
    def twoSum(self, nums: List[int], target: int) -> List[int]:
        # 两层循环,时间复杂度 O(n^2)
        for i in range(len(nums) - 1):
            for j in range(i + 1, len(nums)):
                if nums[i] + nums[j] == target:
                    return i, j
        return []
leetcode_two_sum.go
func twoSumBruteForce(nums []int, target int) []int {
    size := len(nums)
    // 两层循环,时间复杂度 O(n^2)
    for i := 0; i < size-1; i++ {
        for j := i + 1; i < size; j++ {
            if nums[i]+nums[j] == target {
                return []int{i, j}
            }
        }
    }
    return nil
}
leetcode_two_sum.js
function twoSumBruteForce(nums, target) {
    const n = nums.length;
    // 两层循环,时间复杂度 O(n^2)
    for (let i = 0; i < n; i++) {
        for (let j = i + 1; j < n; j++) {
            if (nums[i] + nums[j] === target) {
                return [i, j];
            }
        }
    }
    return [];
}
leetcode_two_sum.ts
function twoSumBruteForce(nums: number[], target: number): number[] {
    const n = nums.length;
    // 两层循环,时间复杂度 O(n^2)
    for (let i = 0; i < n; i++) {
        for (let j = i + 1; j < n; j++) {
            if (nums[i] + nums[j] === target) {
                return [i, j];
            }
        }
    }
    return [];
};
leetcode_two_sum.c

leetcode_two_sum.cs

方法二:辅助哈希表

时间复杂度 \(O(N)\) ,空间复杂度 \(O(N)\) ,属于「空间换时间」。

借助辅助哈希表 dic ,通过保存数组元素与索引的映射来提升算法运行速度。

leetcode_two_sum.java
class SolutionHashMap {
    public int[] twoSum(int[] nums, int target) {
        int size = nums.length;
        // 辅助哈希表,空间复杂度 O(n)
        Map<Integer, Integer> dic = new HashMap<>();
        // 单层循环,时间复杂度 O(n)
        for (int i = 0; i < size; i++) {
            if (dic.containsKey(target - nums[i])) {
                return new int[] { dic.get(target - nums[i]), i };
            }
            dic.put(nums[i], i);
        }
        return new int[0];
    }
}
leetcode_two_sum.cpp
class SolutionHashMap {
public:
    vector<int> twoSum(vector<int>& nums, int target) {
        int size = nums.size();
        // 辅助哈希表,空间复杂度 O(n)
        unordered_map<int, int> dic;
        // 单层循环,时间复杂度 O(n)
        for (int i = 0; i < size; i++) {
            if (dic.find(target - nums[i]) != dic.end()) {
                return { dic[target - nums[i]], i };
            }
            dic.emplace(nums[i], i);
        }
        return {};
    }
};
leetcode_two_sum.py
class SolutionHashMap:
    def twoSum(self, nums: List[int], target: int) -> List[int]:
        # 辅助哈希表,空间复杂度 O(n)
        dic = {}
        # 单层循环,时间复杂度 O(n)
        for i in range(len(nums)):
            if target - nums[i] in dic:
                return dic[target - nums[i]], i
            dic[nums[i]] = i
        return []
leetcode_two_sum.go
func twoSumHashTable(nums []int, target int) []int {
    // 辅助哈希表,空间复杂度 O(n)
    hashTable := map[int]int{}
    // 单层循环,时间复杂度 O(n)
    for idx, val := range nums {
        if preIdx, ok := hashTable[target-val]; ok {
            return []int{preIdx, idx}
        }
        hashTable[val] = idx
    }
    return nil
}
leetcode_two_sum.js
function twoSumHashTable(nums, target) {
    // 辅助哈希表,空间复杂度 O(n)
    let m = {};
    // 单层循环,时间复杂度 O(n)
    for (let i = 0; i < nums.length; i++) {
        if (m[nums[i]] !== undefined) {
            return [m[nums[i]], i];
        } else {
            m[target - nums[i]] = i;
        }
    }
    return [];
}
leetcode_two_sum.ts
function twoSumHashTable(nums: number[], target: number): number[] {
    // 辅助哈希表,空间复杂度 O(n)
    let m: Map<number, number> = new Map();
    // 单层循环,时间复杂度 O(n)
    for (let i = 0; i < nums.length; i++) {
        let index = m.get(nums[i]);
        if (index !== undefined) {
            return [index, i];
        } else {
            m.set(target - nums[i], i);
        }
    }
    return [];
};
leetcode_two_sum.c

leetcode_two_sum.cs