空间复杂度¶
「空间复杂度 Space Complexity」统计 算法使用内存空间随着数据量变大时的增长趋势 。这个概念与时间复杂度很类似。
算法相关空间¶
算法运行中,使用的内存空间主要有以下几种:
- 「输入空间」用于存储算法的输入数据;
 - 「暂存空间」用于存储算法运行中的变量、对象、函数上下文等数据;
 - 「输出空间」用于存储算法的输出数据;
 
Tip
通常情况下,空间复杂度统计范围是「暂存空间」+「输出空间」。
暂存空间可分为三个部分:
- 「暂存数据」用于保存算法运行中的各种 常量、变量、对象 等。
 - 「栈帧空间」用于保存调用函数的上下文数据。系统每次调用函数都会在栈的顶部创建一个栈帧,函数返回时,栈帧空间会被释放。
 - 「指令空间」用于保存编译后的程序指令,在实际统计中一般忽略不计。
 

Fig. 算法使用的相关空间
/* 类 */
class Node {
    int val;
    Node next;
    Node(int x) { val = x; }
}
/* 函数(或称方法) */
int function() {
    // do something...
    return 0;
}
int algorithm(int n) {        // 输入数据
    final int a = 0;          // 暂存数据(常量)
    int b = 0;                // 暂存数据(变量)
    Node node = new Node(0);  // 暂存数据(对象)
    int c = function();       // 栈帧空间(调用函数)
    return a + b + c;         // 输出数据
}
/* 结构体 */
struct Node {
    int val;
    Node *next;
    Node(int x) : val(x), next(nullptr) {}
};
/* 函数(或称方法) */
int func() {
    // do something...
    return 0;
}
int algorithm(int n) {        // 输入数据
    const int a = 0;          // 暂存数据(常量)
    int b = 0;                // 暂存数据(变量)
    Node* node = new Node(0);  // 暂存数据(对象)
    int c = func();       // 栈帧空间(调用函数)
    return a + b + c;         // 输出数据
}
/* 结构体 */
type Node struct {
    val  int
    next *Node
}
/* 创建 Node 结构体 */
func newNode(val int) *Node {
    return &Node{val: val}
}
/* 函数(或称方法)*/
func function() int {
    // do something...
    return 0
}
func algorithm(n int) int { // 输入数据
    const a = 0             // 暂存数据(常量)
    b := 0                  // 暂存数据(变量)
    newNode(0)              // 暂存数据(对象)
    c := function()         // 栈帧空间(调用函数)
    return a + b + c        // 输出数据
}
推算方法¶
空间复杂度的推算方法和时间复杂度总体类似,只是从统计 “计算操作数量” 变为统计 “使用空间大小” 。与时间复杂度不同的是,我们一般只关注「最差空间复杂度」。这是因为内存空间是一个硬性要求,我们必须保证在所有输入数据下都有足够的内存空间预留。
最差空间复杂度中的 “最差” 有两层含义,分别为输入数据的最差分布、算法运行中的最差时间点。
- 以最差输入数据为准。 当 \(n < 10\) 时,空间复杂度为 \(O(1)\) ;但是当 \(n > 10\) 时,初始化的数组 
nums使用 \(O(n)\) 空间;因此最差空间复杂度为 \(O(n)\) ; - 以算法运行过程中的峰值内存为准。 程序在执行最后一行之前,使用 \(O(1)\) 空间;当初始化数组 
nums时,程序使用 \(O(n)\) 空间;因此最差空间复杂度为 \(O(n)\) ; 
在递归函数中,需要注意统计栈帧空间。 例如函数 loop(),在循环中调用了 \(n\) 次 function() ,每轮中的 function() 都返回并释放了栈帧空间,因此空间复杂度仍为 \(O(1)\) 。而递归函数 recur() 在运行中会同时存在 \(n\) 个未返回的 recur() ,从而使用 \(O(n)\) 的栈帧空间。
常见类型¶
设输入数据大小为 \(n\) ,常见的空间复杂度类型有(从低到高排列)

Fig. 空间复杂度的常见类型
Tip
部分示例代码需要一些前置知识,包括数组、链表、二叉树、递归算法等。如果遇到看不懂的地方无需担心,可以在学习完后面章节后再来复习,现阶段先聚焦在理解空间复杂度含义和推算方法上。
常数阶 \(O(1)\)¶
常数阶常见于数量与输入数据大小 \(n\) 无关的常量、变量、对象。
需要注意的是,在循环中初始化变量或调用函数而占用的内存,在进入下一循环后就会被释放,即不会累积占用空间,空间复杂度仍为 \(O(1)\) 。
/* 常数阶 */
func spaceConstant(n int) {
    // 常量、变量、对象占用 O(1) 空间
    const a = 0
    b := 0
    nums := make([]int, 10000)
    ListNode := newNode(0)
    // 循环中的变量占用 O(1) 空间
    var c int
    for i := 0; i < n; i++ {
        c = 0
    }
    // 循环中的函数占用 O(1) 空间
    for i := 0; i < n; i++ {
        function()
    }
    fmt.Println(a, b, nums, c, ListNode)
}
线性阶 \(O(n)\)¶
线性阶常见于元素数量与 \(n\) 成正比的数组、链表、栈、队列等。
/* 线性阶 */
void linear(int n) {
    // 长度为 n 的数组占用 O(n) 空间
    int[] nums = new int[n];
    // 长度为 n 的列表占用 O(n) 空间
    List<ListNode> nodes = new ArrayList<>();
    for (int i = 0; i < n; i++) {
        nodes.add(new ListNode(i));
    }
    // 长度为 n 的哈希表占用 O(n) 空间
    Map<Integer, String> map = new HashMap<>();
    for (int i = 0; i < n; i++) {
        map.put(i, String.valueOf(i));
    }
}
/* 线性阶 */
void linear(int n) {
    // 长度为 n 的数组占用 O(n) 空间
    vector<int> nums(n);
    // 长度为 n 的列表占用 O(n) 空间
    vector<ListNode*> nodes;
    for (int i = 0; i < n; i++) {
        nodes.push_back(new ListNode(i));
    }
    // 长度为 n 的哈希表占用 O(n) 空间
    unordered_map<int, string> map;
    for (int i = 0; i < n; i++) {
        map[i] = to_string(i);
    }
}
/* 线性阶 */
func spaceLinear(n int) {
    // 长度为 n 的数组占用 O(n) 空间
    _ = make([]int, n)
    // 长度为 n 的列表占用 O(n) 空间
    var nodes []*Node
    for i := 0; i < n; i++ {
        nodes = append(nodes, newNode(i))
    }
    // 长度为 n 的哈希表占用 O(n) 空间
    m := make(map[int]string, n)
    for i := 0; i < n; i++ {
        m[i] = strconv.Itoa(i)
    }
}
以下递归函数会同时存在 \(n\) 个未返回的 algorithm() 函数,使用 \(O(n)\) 大小的栈帧空间。

Fig. 递归函数产生的线性阶空间复杂度
平方阶 \(O(n^2)\)¶
平方阶常见于元素数量与 \(n\) 成平方关系的矩阵、图。
/* 平方阶 */
void quadratic(int n) {
    // 矩阵占用 O(n^2) 空间
    int [][]numMatrix = new int[n][n];
    // 二维列表占用 O(n^2) 空间
    List<List<Integer>> numList = new ArrayList<>();
    for (int i = 0; i < n; i++) {
        List<Integer> tmp = new ArrayList<>();
        for (int j = 0; j < n; j++) {
            tmp.add(0);
        }
        numList.add(tmp);
    }
}
在以下递归函数中,同时存在 \(n\) 个未返回的 algorihtm() ,并且每个函数中都初始化了一个数组,长度分别为 \(n, n-1, n-2, ..., 2, 1\) ,平均长度为 \(\frac{n}{2}\) ,因此总体使用 \(O(n^2)\) 空间。

Fig. 递归函数产生的平方阶空间复杂度
指数阶 \(O(2^n)\)¶
指数阶常见于二叉树。高度为 \(n\) 的「满二叉树」的结点数量为 \(2^n - 1\) ,使用 \(O(2^n)\) 空间。

Fig. 满二叉树下的指数阶空间复杂度
对数阶 \(O(\log n)\)¶
对数阶常见于分治算法、数据类型转换等。
例如「归并排序」,长度为 \(n\) 的数组可以形成高度为 \(\log n\) 的递归树,因此空间复杂度为 \(O(\log n)\) 。
再例如「数字转化为字符串」,输入任意正整数 \(n\) ,它的位数为 \(\log_{10} n\) ,即对应字符串长度为 \(\log_{10} n\) ,因此空间复杂度为 \(O(\log_{10} n) = O(\log n)\) 。