空间复杂度¶
「空间复杂度 Space Complexity」统计 算法使用内存空间随着数据量变大时的增长趋势 。这个概念与时间复杂度很类似。
算法相关空间¶
算法运行中,使用的内存空间主要有以下几种:
- 「输入空间」用于存储算法的输入数据;
- 「暂存空间」用于存储算法运行中的变量、对象、函数上下文等数据;
- 「输出空间」用于存储算法的输出数据;
Tip
通常情况下,空间复杂度统计范围是「暂存空间」+「输出空间」。
暂存空间可分为三个部分:
- 「暂存数据」用于保存算法运行中的各种 常量、变量、对象 等。
- 「栈帧空间」用于保存调用函数的上下文数据。系统每次调用函数都会在栈的顶部创建一个栈帧,函数返回时,栈帧空间会被释放。
- 「指令空间」用于保存编译后的程序指令,在实际统计中一般忽略不计。
Fig. 算法使用的相关空间
/* 类 */
class Node {
int val;
Node next;
Node(int x) { val = x; }
}
/* 函数(或称方法) */
int function() {
// do something...
return 0;
}
int algorithm(int n) { // 输入数据
final int a = 0; // 暂存数据(常量)
int b = 0; // 暂存数据(变量)
Node node = new Node(0); // 暂存数据(对象)
int c = function(); // 栈帧空间(调用函数)
return a + b + c; // 输出数据
}
/* 结构体 */
struct Node {
int val;
Node *next;
Node(int x) : val(x), next(nullptr) {}
};
/* 函数(或称方法) */
int func() {
// do something...
return 0;
}
int algorithm(int n) { // 输入数据
const int a = 0; // 暂存数据(常量)
int b = 0; // 暂存数据(变量)
Node* node = new Node(0); // 暂存数据(对象)
int c = func(); // 栈帧空间(调用函数)
return a + b + c; // 输出数据
}
/* 结构体 */
type Node struct {
val int
next *Node
}
/* 创建 Node 结构体 */
func newNode(val int) *Node {
return &Node{val: val}
}
/* 函数(或称方法)*/
func function() int {
// do something...
return 0
}
func algorithm(n int) int { // 输入数据
const a = 0 // 暂存数据(常量)
b := 0 // 暂存数据(变量)
newNode(0) // 暂存数据(对象)
c := function() // 栈帧空间(调用函数)
return a + b + c // 输出数据
}
推算方法¶
空间复杂度的推算方法和时间复杂度总体类似,只是从统计 “计算操作数量” 变为统计 “使用空间大小” 。与时间复杂度不同的是,我们一般只关注「最差空间复杂度」。这是因为内存空间是一个硬性要求,我们必须保证在所有输入数据下都有足够的内存空间预留。
最差空间复杂度中的 “最差” 有两层含义,分别为输入数据的最差分布、算法运行中的最差时间点。
- 以最差输入数据为准。 当 \(n < 10\) 时,空间复杂度为 \(O(1)\) ;但是当 \(n > 10\) 时,初始化的数组
nums
使用 \(O(n)\) 空间;因此最差空间复杂度为 \(O(n)\) ; - 以算法运行过程中的峰值内存为准。 程序在执行最后一行之前,使用 \(O(1)\) 空间;当初始化数组
nums
时,程序使用 \(O(n)\) 空间;因此最差空间复杂度为 \(O(n)\) ;
在递归函数中,需要注意统计栈帧空间。 例如函数 loop()
,在循环中调用了 \(n\) 次 function()
,每轮中的 function()
都返回并释放了栈帧空间,因此空间复杂度仍为 \(O(1)\) 。而递归函数 recur()
在运行中会同时存在 \(n\) 个未返回的 recur()
,从而使用 \(O(n)\) 的栈帧空间。
常见类型¶
设输入数据大小为 \(n\) ,常见的空间复杂度类型有(从低到高排列)
Fig. 空间复杂度的常见类型
Tip
部分示例代码需要一些前置知识,包括数组、链表、二叉树、递归算法等。如果遇到看不懂的地方无需担心,可以在学习完后面章节后再来复习,现阶段先聚焦在理解空间复杂度含义和推算方法上。
常数阶 \(O(1)\)¶
常数阶常见于数量与输入数据大小 \(n\) 无关的常量、变量、对象。
需要注意的是,在循环中初始化变量或调用函数而占用的内存,在进入下一循环后就会被释放,即不会累积占用空间,空间复杂度仍为 \(O(1)\) 。
/* 常数阶 */
func spaceConstant(n int) {
// 常量、变量、对象占用 O(1) 空间
const a = 0
b := 0
nums := make([]int, 10000)
ListNode := newNode(0)
// 循环中的变量占用 O(1) 空间
var c int
for i := 0; i < n; i++ {
c = 0
}
// 循环中的函数占用 O(1) 空间
for i := 0; i < n; i++ {
function()
}
fmt.Println(a, b, nums, c, ListNode)
}
线性阶 \(O(n)\)¶
线性阶常见于元素数量与 \(n\) 成正比的数组、链表、栈、队列等。
/* 线性阶 */
void linear(int n) {
// 长度为 n 的数组占用 O(n) 空间
int[] nums = new int[n];
// 长度为 n 的列表占用 O(n) 空间
List<ListNode> nodes = new ArrayList<>();
for (int i = 0; i < n; i++) {
nodes.add(new ListNode(i));
}
// 长度为 n 的哈希表占用 O(n) 空间
Map<Integer, String> map = new HashMap<>();
for (int i = 0; i < n; i++) {
map.put(i, String.valueOf(i));
}
}
/* 线性阶 */
void linear(int n) {
// 长度为 n 的数组占用 O(n) 空间
vector<int> nums(n);
// 长度为 n 的列表占用 O(n) 空间
vector<ListNode*> nodes;
for (int i = 0; i < n; i++) {
nodes.push_back(new ListNode(i));
}
// 长度为 n 的哈希表占用 O(n) 空间
unordered_map<int, string> map;
for (int i = 0; i < n; i++) {
map[i] = to_string(i);
}
}
/* 线性阶 */
func spaceLinear(n int) {
// 长度为 n 的数组占用 O(n) 空间
_ = make([]int, n)
// 长度为 n 的列表占用 O(n) 空间
var nodes []*Node
for i := 0; i < n; i++ {
nodes = append(nodes, newNode(i))
}
// 长度为 n 的哈希表占用 O(n) 空间
m := make(map[int]string, n)
for i := 0; i < n; i++ {
m[i] = strconv.Itoa(i)
}
}
以下递归函数会同时存在 \(n\) 个未返回的 algorithm()
函数,使用 \(O(n)\) 大小的栈帧空间。
Fig. 递归函数产生的线性阶空间复杂度
平方阶 \(O(n^2)\)¶
平方阶常见于元素数量与 \(n\) 成平方关系的矩阵、图。
/* 平方阶 */
void quadratic(int n) {
// 矩阵占用 O(n^2) 空间
int [][]numMatrix = new int[n][n];
// 二维列表占用 O(n^2) 空间
List<List<Integer>> numList = new ArrayList<>();
for (int i = 0; i < n; i++) {
List<Integer> tmp = new ArrayList<>();
for (int j = 0; j < n; j++) {
tmp.add(0);
}
numList.add(tmp);
}
}
在以下递归函数中,同时存在 \(n\) 个未返回的 algorihtm()
,并且每个函数中都初始化了一个数组,长度分别为 \(n, n-1, n-2, ..., 2, 1\) ,平均长度为 \(\frac{n}{2}\) ,因此总体使用 \(O(n^2)\) 空间。
Fig. 递归函数产生的平方阶空间复杂度
指数阶 \(O(2^n)\)¶
指数阶常见于二叉树。高度为 \(n\) 的「满二叉树」的结点数量为 \(2^n - 1\) ,使用 \(O(2^n)\) 空间。
Fig. 满二叉树下的指数阶空间复杂度
对数阶 \(O(\log n)\)¶
对数阶常见于分治算法、数据类型转换等。
例如「归并排序」,长度为 \(n\) 的数组可以形成高度为 \(\log n\) 的递归树,因此空间复杂度为 \(O(\log n)\) 。
再例如「数字转化为字符串」,输入任意正整数 \(n\) ,它的位数为 \(\log_{10} n\) ,即对应字符串长度为 \(\log_{10} n\) ,因此空间复杂度为 \(O(\log_{10} n) = O(\log n)\) 。